https://www.liquidpoker.net/


LP international    Contact            Users: 1006 Active, 2 Logged in - Time: 11:49

Sauce on GTO

New to LiquidPoker? Register here for free!
Forum Index > Poker Blogs
LemOn[5thF]   Czech Republic. Apr 21 2013 11:27. Posts 15163


 
Today’s poker is not your grandfather’s game. Games have become unimaginably aggressive, and the level of play by both amateurs and pros has risen dramatically. Today, aggressive betting and bluffing have become the norm, and plays that were once considered state of the art are common knowledge. It's argued that the cause of this remarkable transition in both approach and skill level has been the influx of thousands of online pros competing in tough games over the internet. Increasingly though, the online/live distinction doesn't hold up— today, pros are grouped more usefully by their poker methodology than by their preferred field of play. The old guard are exploitative players, always trying to gather enough information on their opponents to stay one step ahead. Increasingly, the highest limits of online play have been dominated by game theory optimal (GTO, or optimal, for short) players who don’t much care what their opponent does and seek to play a strategy designed in the long run to beat any other strategy in the long run.
I started my serious poker career in the spring of 2008 firmly on the exploitative side of the fence. Since then, I’ve traversed to the other side and become a champion of GTO play both as player and teacher, all while competing in the highest-stakes games. In 2012 I was lucky enough to be the biggest winner in online poker cash games, taking home about $4 million. (I try not to delude myself: being a winner is primarily skill, being the biggest winner requires a lot of luck.) While I was a winning pro before 2012, I attribute much of my extraordinary success in the past year to my work on optimal poker.
For our purposes, an optimal player seeks to find the optimal strategy, which is the strategy such that any deviation from it breaks even or loses against our opponent’s best counterstrategy. For any game, there exists at least one optimal strategy. As a GTO poker pro, my time and effort go to getting as close to the optimal strategy as possible. Each step along this journeyis called a near-optimal strategy.
As a poker player I have to prioritize the practical over the theoretical at all times. In other words, no matter how interesting this game theory stuff may be, I have to ask, “How is this going to make me money?” A frequent criticism of GTO play in the poker community is that it isn’t particularly profitable, more specifically that GTO play may be useful in minimizing losses against excellent players,and it fails to win significantly against weaker players. A version of this argument is made by David Sklansky in his classic Theory of Poker:

Game theory cannot replace sound judgment. It should only be used when you think your opponent's judgment is as good as or better than yours or when you simply don’t know your opponent. Furthermore, game theory can be used accurately to bluff or call a possible bluff only in a situation where the bettor obviously either has the best hand or is bluffing. (189)

The argument will become clearer through example—using a simple game we’re all familiar with: Rock, Paper, Scissors (RPS). A simple thought experiment should allow you to find the optimal strategy for RPS in just a few minutes. Imagine that before each throw, you had to write down on a slip of paper the frequency with which you would throw out rock, paper, or scissors—and then hand this slip of paper to your opponent. For example, rock half the time, paper half the time, and scissors never. Since your opponent now knows your strategy is to never play scissors, he’ll never play rock, and of his remaining choices paper is superior since it always breaks even or wins, while rock breaks even or loses. More generally, anytime our opponent knows that our frequencies are out of balance, we make it easy for him to pick a specific throw that will beat us in the long run.
Consequently, the optimal strategy for RPS must make all of our frequencies equal in order to defend against an opponent who knows our strategy—therefore, playing rock, paper and scissors one third each is the optimal strategy. A funny feature of RPS’s optimal strategy is that any strategy played against it will have an expected value (EV) of 0. Even the most exploitable strategies— for example, always rock—break even against the optimal strategy. If the optimal strategy in poker is like the optimal strategy in RPS and breaks even against all, or many, of our opponent’s counterstrategies, then, it can be argued, game theory should never replace our judgment. We play poker to win, and any sound poker strategy should aim to give us an expectation in excess of the rake.
Let’s think about one more simple game: tic-tac-toe (TTT). TTT is a game of complete information, which means we can see all of our opponent’s past moves. Any competent TTT player knows that games between two good players will always end in a draw. But let’s say we open with an X in the center and our opponent responds mistakenly with an O in the middle:

We’ve already won the game, and our opponent can only avoid a loss if we make a mistake. In the language of optimal strategies, our opponent has played an exploitable strategy, and if we respond with:
X O
X
X O
then we’re playing the optimal strategy. Had both TTT players played the optimal strategy, the game would end in a draw, which is similar to how we saw the optimal strategy always break even in the long run in RPS. But unlike RPS, when one player deviates from the optimal strategy in TTT, his opponent will be able to secure a win. The technical term for a suboptimal strategy that always breaks even or loses against the optimal strategy is a dominated strategy. My main project as an optimal poker pro is to eliminate from my game as many dominated strategies as possible.
Chess is an example of a much more complicated game of complete information. Chess is complicated enough that it has still not been perfectly solved but simple enough that top computers almost always win against the best humans, and against average human players, the computer always wins. For the computer, chess is a lot like tic-tac-toe when played against a novice who doesn’t see that his strategy is dominated. In a game as complicated as chess, the optimal strategy will always secure a victory against even advanced suboptimal strategies.
In my experience poker is a lot like chess, and not very much at all like RPS. Optimal (or near-optimal) poker will absolutely crush even relatively strong strategies played by intelligent humans, because even professional players (myself included) employ many dominated strategies.
It turns out that some forms of poker are becoming much like chess. The simplest form of poker, from a programming perspective, is heads-up limit hold ’em, and today’s best bots routinely beat world-class human players by a significant margin. More specifically, world-class heads-up limit hold ’em pros typically win 1to 5 big blinds per hundred hands (bb/100) against somewhat weaker players, and the best bots now beat the pros by about the same amount as the pros beat the games for. It’s even possible to calculate how much a bot would lose to an opponent’s best counterstrategy (although it’s impossible to calculate the optimal strategy itself), and the best bots lose to that strategy by about twice as much as they beat the pros!*
But even if we play poker with the intention of exploiting our opponents, it’s often extremely helpful to know near-optimal play in order to pick an approptiate exploitative strategy, especially if our opponent is also a strong player . For example, say we’re playing someone who calls 40 percent of the time after opening on the button and being 3bet by the big blind. If we have an idea of what the optimal 3-bet calling percentage is, then this information can be used to encourage us to 3-bet more aggressively for value (if she’s calling too much) or bluff more aggressively (if she’s folding too much). In other words, we can use our best guess of what optimal play is to make adjustments to exploit our opponents.
In addition,a near-optimal strategy in poker wins against just about any strategy an opponent is likely to play. This means we can ignore our opponent’s strategy most of the time and still expect to have a healthy winrate. If you’re an online player who multi-tables, ignoring your opponent’s strategy frees up a massive amount of attention.




http://www.leggopoker.com/blogs/sauce...coming-poker-book-11431.html#comments

The books looks solid, too

0 votes
Facebook Twitter
93% Sure! Last edit: 21/04/2013 11:30

The72o   Zimbabwe. Apr 21 2013 13:45. Posts 6112

I thought that this chapter was released because book was canceled?

A Hard Way to Make an Easy Living 

LemOn[5thF]   Czech Republic. Apr 21 2013 13:58. Posts 15163


  On April 21 2013 12:45 The72o wrote:
I thought that this chapter was released because book was canceled?


they just didnt include it?

93% Sure!  

LemOn[5thF]   Czech Republic. Apr 21 2013 13:59. Posts 15163

http://forumserver.twoplustwo.com/33/...no-limit-hold-em-1299572/index11.html
Seems like it's still up and running, can't wait to get my hands on it there's a lot of contradictory and confusing info on balance and GTO and MoP is just way too hard to understand and apply at the same time

93% Sure!  

Wenbo   France. Apr 21 2013 14:39. Posts 14

interesting read thanks


bigredhoss   Cook Islands. Apr 21 2013 15:38. Posts 8649

well hopefully for the people still making a living off poker this matt janda guy isn't as insightful or illuminating as sauce.

Truck-Crash Life 

Target-x17   Canada. Apr 21 2013 16:19. Posts 1027

push and shove games like 180 sngs and hypers are all gto when you think about it very simple games reach gto much faster

f u bw rock 

traxamillion   United States. Apr 21 2013 19:18. Posts 10468

Nothing new really


spets1   Australia. Apr 22 2013 01:52. Posts 2179

GTFO strategy is best strategy

hola 

lacman730   United States. Apr 22 2013 13:05. Posts 311

i don't like how sauce is implying that players should actively be striving towards GTO play. players should be playing as maximally exploitative as possible since nobody knows what GTO play looks like. it just happens that as you move up stakes, taking advantage of others' unbalanced play leaves you open to be counter-exploited which is why sauce's game probably looks closer to GTO than ours.

if GTO was the way to go then nobody would ever turn their hud on again.


Highcard   Canada. Apr 22 2013 16:46. Posts 5428


  On April 22 2013 12:05 lacman730 wrote:
i don't like how sauce is implying that players should actively be striving towards GTO play. players should be playing as maximally exploitative as possible since nobody knows what GTO play looks like. it just happens that as you move up stakes, taking advantage of others' unbalanced play leaves you open to be counter-exploited which is why sauce's game probably looks closer to GTO than ours.

if GTO was the way to go then nobody would ever turn their hud on again.



if you don't know your own ranges and if those ranges are anywhere near balanced or not then how can you know someone else's range and their balance? and then how can you know if you are being exploited if you don't even know how your range looks.

All of that takes gto into account and from that exploitation can now occur

I have learned from poker that being at the table is not a grind, the grind is living and poker is how I pass the time 

SemPeR   Canada. Apr 22 2013 17:49. Posts 2288

wanted to say thanks for sharing. I don't follow sauce's blog and wouldn't have found this otherwise. Was helpful.


lacman730   United States. Apr 23 2013 00:31. Posts 311


  On April 22 2013 15:46 Highcard wrote:
Show nested quote +



if you don't know your own ranges and if those ranges are anywhere near balanced or not then how can you know someone else's range and their balance? and then how can you know if you are being exploited if you don't even know how your range looks.

All of that takes gto into account and from that exploitation can now occur




i don't think you understood my post because i never said that knowing if your range is balanced or not is useless. what i'm saying is that even if you did, you shouldn't make the "optimal" play in practice if you know what the higher ev "exploitative" play is.

for example if you get to the river with one PSB left and you know for a fact that your range consists of 68% nuts and 32% air, you can jam the river 100% of the time and your opponent's best response is to fold every time even if you tell him your strategy. poker isn't played in a vacuum though, so if you get to this spot vs a total calling station it only makes to deviate from the "optimal" play by never bluffing and only shoving when you have the nuts.

to rephrase my original point, i don't think we as players should be asking ourselves, "how do i make sure my range, bet-sizing, bluffing frequency etc. is as balanced as possible so i can't possibly be exploited?" to do this is to take your opponent completely out of the equation and in my opinion undermines the entire spirit of the game itself.


Target-x17   Canada. Apr 24 2013 01:30. Posts 1027

knowing gto is not about being perfect and breakeven its about knowing what gto is and working from that point to exploit others

f u bw rock 

 



Poker Streams

















Copyright © 2024. LiquidPoker.net All Rights Reserved
Contact Advertise Sitemap