1
 |
TalentedTom   Canada. Jun 11 2014 16:49. Posts 20070 | | |
$20 to whoever can post a solution to these two or $10 per

|
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | |
|
|
1
 |
morph1   Sierra Leone. Jun 11 2014 17:18. Posts 2352 | | |
|
Always Look On The Bright Side of Life | |
|
|
1
 |
devon06atX   Canada. Jun 11 2014 17:20. Posts 5460 | | |
Doesn't matter, Crosby chokes in high-pressure games. The end. |
|
|
0
 |
Gnarly   United States. Jun 11 2014 17:46. Posts 1723 | | |
What's even going on in the first one? I'm guessing the second one would be an equation. Measure volume of a sphere, minus that from the volume of a cone, and voila? I don't even know what inscibed means... I know what inscribed means, but I don't see how that would reduce any volume of the cone considering that the "sphere" would simply be written on the inside of the cone... which doesn't make much sense. So, there is only one possible answer, which you've already provided: the volume of a cone. |
|
|
|
1
 |
TalentedTom   Canada. Jun 11 2014 17:48. Posts 20070 | | |
| On June 11 2014 16:18 morph1 wrote:
about tree fiddy |
dem fighting words |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | |
|
|
1
 |
TalentedTom   Canada. Jun 11 2014 17:54. Posts 20070 | | |
| On June 11 2014 16:46 Gnarly wrote:
I don't even know what inscibed means... I know what inscribed means, . |
spelling error ^^, expect many more |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | |
|
|
1
 |
QuirkyEric   Slovakia. Jun 11 2014 17:57. Posts 308 | | |
|
Je ti 31 let a umíš akorát klikat myší, vzpamatuj se -Daniel Havlík | |
|
|
1
 |
napoleono   Romania. Jun 11 2014 17:59. Posts 771 | | |
|
|
1
 |
TalentedTom   Canada. Jun 11 2014 18:00. Posts 20070 | | |
im pretty sure the crosby one is 6 feet to the right since that will create an equilateral triangle and this give the highest possible angle, im just not sure how I can prove this statement mathematically |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | |
|
|
1
 |
TalentedTom   Canada. Jun 11 2014 18:02. Posts 20070 | | |
PO is the net, is it 6ft wide, he is 3 feeet outside the net but moving towards it (or away) horizontally |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | |
|
|
1
 |
NewbSaibot   United States. Jun 11 2014 18:46. Posts 4946 | | |
Is this how sports betting is done? |
|
|
|
1
 |
bigredhoss   Cook Islands. Jun 11 2014 19:28. Posts 8649 | | |
in the top half of your pic, i think the reason the various letters and numbers are gathered around the triangle but afraid to go inside is because there's a ninja turtle inside the triangle. hope this helps. |
|
|
|
1
 |
devon06atX   Canada. Jun 11 2014 19:33. Posts 5460 | | |
It would be 6ft if he was moving across the goal line. Since he's moving up towards the front of the crease, he'll have to travel a longer distance to get to the middle of the net mark. |
|
|
1
 |
gitpush   Australia. Jun 11 2014 20:22. Posts 62 | | |
|
| Last edit: 11/06/2014 20:34 |
|
|
1
 |
LemOn[5thF]   Czech Republic. Jun 11 2014 20:22. Posts 15163 | | |
6ft? is that like 7kilometres or? |
|
|
|
1
 |
gitpush   Australia. Jun 11 2014 20:33. Posts 62 | | |
2nd problem seems slightly easier (at the beginning) and more classic than the first problem so I am borrowing some pics off of the internet:

There is a similar triangle here, so we have a formula between r, h and R:

solve that for r^2 (we need to use the squared numbers first), we get r^2 = (h * R^2) / (h - 2 * R)
(in the wolfram alpha link, s = r^2)
http://www.wolframalpha.com/input/?i=...8s%29+%2F+sqrt%28s+%2B+h%5E2%29+for+s
substitute r^2 into our cone formula V = (1/3) * pi * r^2 * h, we get: V = pi * h^2 * R^2 / (3 * (h - 2R))
http://www.wolframalpha.com/input/?i=...+pi+*+h+*+R%5E2+%2F+%28h+-+2*R%29+*+h
from this point on we just need to substitute theta back into this equation and minimize it with some calculus..
lets go back to the similar triangle again, notice the smaller triangle with h-R and R? cos(theta) = R / (h - R). solve this equation for h we get h = R * (1 / cos(theta) + 1)
in this link sec(theta) = 1 / cos(theta)
wolfram alpha link here
substitute h back into V, we get V = (pi * R^4 * (sec(theta)+1)^2)/(3 * (R * (sec(theta)+1)-2 * R)) = (pi * (sec(theta)+1)^2)/(3 * ((sec(theta)+1)-2)) * R^3 ------> factoring out R so we can do some dirty stuff, since R is irrelevant to our calculations
wolfram alpha link for this substitution step
so if we can minimize (pi * (sec(theta)+1)^2)/(3 * ((sec(theta)+1)-2)), we can minimize V.
plotting it: http://www.wolframalpha.com/input/?i=...+%28sec%28theta%29%2B1%29-2+%29%29%29
differentiate that then solve for 0, we get some periodic answers, since this function is periodic.
http://www.wolframalpha.com/input/?i=...9+sec%5E2%28%CE%B8%29+%3D+0+for+theta
so we pick the smallest one (from the plot above, it seems like the smallest theta is around 0.5 to 1.5), so we solve that with the power of wolfram alpha:
http://www.wolframalpha.com/input/?i=...for+theta+where+0.5+%3C+theta+%3C+1.5
found that theta is about arccos(1/3) = 1.231 rad, which we can substitute cos(theta) = 1/3 (which means sec(theta) = 3) back into the V equation to solve for V, we finally get
V = (pi * R^4 * (sec(theta)+1)^2)/(3 * (R * (sec(theta)+1)-2 * R))
V = (pi * R^4 * (3+1)^2)/(3 * (R * (3+1)-2 * R)) ----> substituting sec(theta) = 3 here
V = (8/3) * pi * R^3
so at the end, when cos(theta) = 1/3 (theta = arccos(1/3)), V is smallest. V = (8/3) * pi * R^3
http://www.wolframalpha.com/input/?i=...%283+*+%28R+*+%283%2B1%29-2+*+R%29%29 |
|
| Last edit: 11/06/2014 21:45 |
|
|
1
| |
i'm very confused by the wording of the first question, i take it the point S is moving to the right?
if so, the answer is 6 feet. you can prove this by mirroring the image, and making S a 0 on the X axis. as X -> 6 from the left hand side, theta approaches 60. as X -> 6 from the right hand side (starting at 12), theta approaches 60
edit - nm, looks like S is moving up the Y axis, you mentioned S was going to the right in one of your replies but the problem stated that that wasn't what it was looking for |
|
| Last edit: 11/06/2014 20:58 |
|
|
4
 |
Daut   United States. Jun 11 2014 20:52. Posts 8955 | | |
|
NewbSaibot: 18 TIMES THE SPEED OF LIGHT. Because FUCK YOU, Daut | Last edit: 11/06/2014 20:53 |
|
|
1
 |
GoTuNk   Chile. Jun 11 2014 21:26. Posts 2860 | | |
I'm shocked you solved this |
|
|
1
 |
ggplz   Sweden. Jun 11 2014 23:07. Posts 16784 | | |
really? daut is exactly who i expected to solve this |
|
if poker is dangerous to them i would rank sports betting as a Kodiak grizzly bear who smells blood after you just threw a javelin into his cub - RaiNKhAN | |
|
|
1
 |
bigredhoss   Cook Islands. Jun 11 2014 23:19. Posts 8649 | | |
why does daut have a purple pigeon by his name anyway |
|
Truck-Crash Life | Last edit: 11/06/2014 23:20 |
|
|
1
 |
K40Cheddar   United States. Jun 11 2014 23:29. Posts 2202 | | |
I believe they call it "origami" |
|
|
|
1
 |
bigredhoss   Cook Islands. Jun 11 2014 23:35. Posts 8649 | | |
i just googled "origami" seems pretty gay i guess that's why it's purple
(no offense daut!) |
|
|
|
1
 |
ggplz   Sweden. Jun 12 2014 00:25. Posts 16784 | | |
origami (because he's so good at folding) |
|
if poker is dangerous to them i would rank sports betting as a Kodiak grizzly bear who smells blood after you just threw a javelin into his cub - RaiNKhAN | |
|
|
1
 |
TalentedTom   Canada. Jun 12 2014 00:32. Posts 20070 | | |
thanks a lot everyone, managed to solve the cone one eventually but the Crosby one i could not (had a doh moment when I read the beginning of the solution)
gitpush your answers were very insightful thanks a lot, shoot me a PM ill send you the prize
thanks everyone who participated, including bigbob |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | Last edit: 12/06/2014 00:36 |
|
|
1
 |
gitpush   Australia. Jun 12 2014 00:51. Posts 62 | | |
| On June 11 2014 23:32 TalentedTom wrote:
thanks a lot everyone, managed to solve the cone one eventually but the Crosby one i could not (had a doh moment when I read the beginning of the solution)
gitpush your answers were very insightful thanks a lot, shoot me a PM ill send you the prize
thanks everyone who participated, including bigbob |
just PM'ed  |
|
|
1
 |
Rhaegar99   Australia. Jun 12 2014 11:18. Posts 55 | | |
not too sure how everyone got the first question but i got the same answer as everyone else
theta = atan(9/x) - atan(3/x)
dtheta/dx = 3/(x^2+9) - 9/(x^2+81)
find maxima by setting dtheta/dx to 0
1/(x^2+9) = 3/(x^2+81)
x^2+81 = 3x^2+27
2x^2 = 54
x^2 = 27
x = 5.196
|
|
|
1
 |
devon06atX   Canada. Jun 12 2014 13:46. Posts 5460 | | |
That blows my mind. I mean, the best angle to get a shot from is at the middle of the net, right? Net is 6ft wide, so 72 inches. So the ideal angle regarding the net is 36 inches.
He's 36 inches *away* from the net, so he has to travel that just to get to the net.
36+36 = 72 inches (6 feet)
So, travelling along the goalline, he would have to travel 6 feet to reach the best angle to shoot from (the middle). But* he's going at an angle from the goal line... therefore he would have to travel further, no?
Does this reasoning make sense to anyone? |
|
|
1
 |
devon06atX   Canada. Jun 12 2014 13:56. Posts 5460 | | |
I mean, the optimal point to shoot from is the very middle of the net. Even if you travelled along the goalline, you would need to travel exactly 6ft to get to the optimal spot to shoot.
However, since you're travelling up and over, the distance would increase significantly.
That's why I say 5.196 feet has got to be wrong. By quite a bit.
Someone please explain to me why I'm wrong. Cuz I just don't see it. |
|
|
1
 |
traxamillion   United States. Jun 12 2014 15:54. Posts 10468 | | |
You can't ever get to the middle of the net given the rules you are just sliding north or south in route always perpendicular to the goalposts.
To get to your desired position would require parallel or diagonal movement. I mean if you could go anywhere the optimal point would be between the posts as close to the goal line as possible making the shooting angle approach 180 degrees. That is against the directions tho |
|
|
1
 |
devon06atX   Canada. Jun 12 2014 16:48. Posts 5460 | | |
Did you read my posts? I don't get what you're trying to accomplish by what you wrote. Don't mean to sound like a dick, but I read your post and was basically *facepalm. That's why I threw in the 'Even' part in the "Even if you travelled along the goalline".
Yes, I'm aware that moving a puck through a metal post isn't possible. I'm also aware that it's against the rules.
All I stated was the shortest possible distance to get to the desired angle (middle of the net) would be 6 feet. I understand that isn't the answer, as per the fact I can't move through a post, and that it also breaks the rules.
What I'm saying is, if the literal shortest distance to the required angle is 6 feet, how is this 'correct' answer, where you have to travel significantly further, a shorter distance than the literal shortest possible distance? |
|
|
1
 |
devon06atX   Canada. Jun 12 2014 16:49. Posts 5460 | | |
Oh, I think I understand what you're trying to say. And honestly man? You realize you can be shooting from the middle of the net... 17000 km away, right? wtf trax... |
|
|
1
 |
devon06atX   Canada. Jun 12 2014 16:51. Posts 5460 | | |
When someone shoots from the centre ice dot, that's the middle of the net.
I would like someone to answer my question though, because as is, I'm pretty damn positive that answer is wrong. |
|
|
1
 |
TalentedTom   Canada. Jun 12 2014 18:15. Posts 20070 | | |
| On June 12 2014 12:56 devon06atX wrote:
I mean, the optimal point to shoot from is the very middle of the net. Even if you travelled along the goalline, you would need to travel exactly 6ft to get to the optimal spot to shoot.
However, since you're travelling up and over, the distance would increase significantly.
That's why I say 5.196 feet has got to be wrong. By quite a bit.
Someone please explain to me why I'm wrong. Cuz I just don't see it. |
this was almost exactly my original thought process, it makes a lot of logical sence to shoot from exactly the middle, but apparently math says otherwise, kinda akward
optimized cosine law dont lie, |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | Last edit: 12/06/2014 18:17 |
|
|
1
 |
TalentedTom   Canada. Jun 12 2014 18:19. Posts 20070 | | |
| On June 12 2014 10:18 Rhaegar99 wrote:
not too sure how everyone got the first question but i got the same answer as everyone else
theta = atan(9/x) - atan(3/x)
dtheta/dx = 3/(x^2+9) - 9/(x^2+81)
find maxima by setting dtheta/dx to 0
1/(x^2+9) = 3/(x^2+81)
x^2+81 = 3x^2+27
2x^2 = 54
x^2 = 27
x = 5.196
|
i am looking for a more simplified compressed solution, something that would not require technological (other then a calculator) intervention, will check this out later when I get home.
Gonna go vote on provincial ellections |
|
Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light not our darkness that most frightens us and as we let our own lights shine we unconsciously give other people permision to do the same | |
|
|
4
 |
Daut   United States. Jun 12 2014 18:53. Posts 8955 | | |
ITT people try to solve a cut and dried math problem with no math and wonder why they are wrong |
|
NewbSaibot: 18 TIMES THE SPEED OF LIGHT. Because FUCK YOU, Daut | |
|
|
4
 |
Daut   United States. Jun 12 2014 19:09. Posts 8955 | | |
| On June 12 2014 12:56 devon06atX wrote:
I mean, the optimal point to shoot from is the very middle of the net. Even if you travelled along the goalline, you would need to travel exactly 6ft to get to the optimal spot to shoot.
However, since you're travelling up and over, the distance would increase significantly.
That's why I say 5.196 feet has got to be wrong. By quite a bit.
Someone please explain to me why I'm wrong. Cuz I just don't see it. |
as the height increases, the angles all change. not going to draw a picture, but basically the bottom left angle and the top angles decrease and the angle on the right side increases as the height increases. so moving further away just makes the angle smaller.
essentially this is a quadratic, something is increasing, other things are decreasing, you have to find the maximum point along which 2 conflicting things are changing |
|
NewbSaibot: 18 TIMES THE SPEED OF LIGHT. Because FUCK YOU, Daut | |
|
|
1
 |
bigredhoss   Cook Islands. Jun 12 2014 21:39. Posts 8649 | | |
i didnt read it as a math problem, the numbers and stuff are just added details to enrich the story the picture is telling. the real problem lies in the ninja turtle that's inside of the triangle, and his psychological intimidation of the outside letters and numbers. |
|
|
|
1
 |
traxamillion   United States. Jun 13 2014 02:21. Posts 10468 | | |
| On June 12 2014 15:49 devon06atX wrote:
Oh, I think I understand what you're trying to say. And honestly man? You realize you can be shooting from the middle of the net... 17000 km away, right? wtf trax... |
Right. But it's obviously not the same angle at any distance from the goal. The further away from the goal you go the more acute the angle becomes.
You are WTFing me but it seems as though you don't understand the correct answer people arrived at or what I am saying.
They are talking about the angle created from the shooting point to each goal post. If you are right in front of the net that is a very wide angle; nearly 180 degrees. If you are 1700km from the net that angle will be less than 1 degree given the posts are only 6 feet wide. |
|
|
1
 |
traxamillion   United States. Jun 13 2014 02:39. Posts 10468 | | |
Looking at the original picture all the question asks is what optimal distance S-G (perpendicular to the goaline meaning the line segment created between the points S & G will always form a right angle with the goaline) will create the largest angle theta (no symbol for that in iPhone but talented tom draws the symbol on the angle in question in the problem.
Don't know how to state it any more clearly than that. The fact that the truly optimal place to shoot is the center of the goalposts has nothing to do with the problem presented. |
|
|
1
 |
Rhaegar99   Australia. Jun 13 2014 10:22. Posts 55 | | |
| On June 12 2014 17:15 TalentedTom wrote:
Show nested quote +
On June 12 2014 12:56 devon06atX wrote:
I mean, the optimal point to shoot from is the very middle of the net. Even if you travelled along the goalline, you would need to travel exactly 6ft to get to the optimal spot to shoot.
However, since you're travelling up and over, the distance would increase significantly.
That's why I say 5.196 feet has got to be wrong. By quite a bit.
Someone please explain to me why I'm wrong. Cuz I just don't see it. |
this was almost exactly my original thought process, it makes a lot of logical sence to shoot from exactly the middle, but apparently math says otherwise, kinda akward
optimized cosine law dont lie,
|
This is incorrect. If you were exactly in the middle of the two posts, the optimal distance will be when you and the two posts form an equilateral triangle, not when your 6ft away. Surprisingly, the height of a 6ft equilateral triangle is also 5.196ft.
| On June 12 2014 17:19 TalentedTom wrote:
Show nested quote +
On June 12 2014 10:18 Rhaegar99 wrote:
not too sure how everyone got the first question but i got the same answer as everyone else
theta = atan(9/x) - atan(3/x)
dtheta/dx = 3/(x^2+9) - 9/(x^2+81)
find maxima by setting dtheta/dx to 0
1/(x^2+9) = 3/(x^2+81)
x^2+81 = 3x^2+27
2x^2 = 54
x^2 = 27
x = 5.196
|
i am looking for a more simplified compressed solution, something that would not require technological (other then a calculator) intervention, will check this out later when I get home.
Gonna go vote on provincial ellections
|
I believe this is as simple of a solution that you will get. This is a basic optimization question which you learn in early calculus.
Firstly you want to look for the function of theta (let us use t) with respect to x (our distance); that is, the angle S of triangle SGP minus the angle S of triangle SGO.
Both of these are right angle triangles so we can use the tan trigonometry function tan(t) = opposite/adjacent for each triangle
To get t by itself we inverse tan (aka atan), the equation to get t = atan(opposite/adjacent)
Therefore our t function is: t = atan(9/x) - atan(3/x)
On our next step, we need to derive the function.
The derivative of our function is: dt/dx = 3/(x^2+9) - 9/(x^2+81)
We calculate the derivative of the function (dt/dx) so that we get the rate at which t changes at any point with respect to x.
A positive dt/dx indicates that t is increasing when x increases, and a negative dt/dx indicates that t is decreasing when x increases.
Therefore to get the the maximum value of t, it is at the point where dt/dx is neither increase nor decreasing, which is when dt/dx = 0
This is also called the maxima of the function.
Therefore to get the maximum distance, we solve for d when dt/dx = 0
The rest is just basic algebra
0 = 3/(x^2+9) - 9/(x^2+81)
1/(x^2+9) = 3/(x^2+81)
x^2+81 = 3x^2+27
2x^2 = 54
x^2 = 27
x = 5.196
|
|
| Last edit: 13/06/2014 10:43 |
|
|
1
 |
devon06atX   Canada. Jun 13 2014 12:37. Posts 5460 | | |
nah, trax, you're right. I (stupidly) thought crosby was skating at an angle towards the net. aka - the right angle would be at the middle of the net, not at the goal-line 3 ft outside the post.
Even thought it clearly states in the question that he's skating perpendicular, I stupidly thought he was skating at 45 degrees... and the diagram just fucked me all up haha.
My idiotic mistake.
I hope that clears up why I had an impossible time accepting the correct answer. I was sorta embarassed once I figured out my own error heh.

edit - sorry for being '*facepalmy' yesterday heh |
|
| Last edit: 13/06/2014 14:02 |
|
|
1
 |
devon06atX   Canada. Jun 13 2014 12:47. Posts 5460 | | |
|
|
1
 |
lhr0909   China. Jun 13 2014 20:02. Posts 423 | | |
man everyone got super hung up on these two classic calculus problems :O |
|
|
|
1
 |
lhr0909   China. Jun 13 2014 20:08. Posts 423 | | |
| On June 12 2014 17:19 TalentedTom wrote:
Show nested quote +
On June 12 2014 10:18 Rhaegar99 wrote:
not too sure how everyone got the first question but i got the same answer as everyone else
theta = atan(9/x) - atan(3/x)
dtheta/dx = 3/(x^2+9) - 9/(x^2+81)
find maxima by setting dtheta/dx to 0
1/(x^2+9) = 3/(x^2+81)
x^2+81 = 3x^2+27
2x^2 = 54
x^2 = 27
x = 5.196
|
i am looking for a more simplified compressed solution, something that would not require technological (other then a calculator) intervention, will check this out later when I get home.
Gonna go vote on provincial ellections
|
I think this solution is slightly simpler than the one i had originally (i am gitpush lol), since if you remember what the derivative of arctan(x) is you can do this by hand. (my solution based on the cosine law requires computer to solve the derivative and optimizations)
i remember i had to memorize derivative of arctan(x) when i learned calculus.. but most of the time we use Maple / Mathematica (Wolfram Alpha) for most of our school work. |
|
|
|
1
 |
GoldRush   United States. Jun 13 2014 23:51. Posts 1025 | | |
| On June 11 2014 22:07 ggplz wrote:
really? daut is exactly who i expected to solve this |
|
|
|
1
 |
traxamillion   United States. Jun 15 2014 19:40. Posts 10468 | | |
|
|
|